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Abstract

A method based on an augmented Lagrangian formulation is developed

which allows one to estimate coefficients in an elliptic differential equation

from measurements of the state. This is a hybrid method combining the

output-least-squares and the equation-error technique. Seminorm regular-

ization is employed, and convergence and stability properties are discussed.

Several aspects of an efficient implementation are decribed. Finally the effec-

tiveness of the method is demonstrated by means of one and two dimensional

examples.
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1 Introduction

In this paper we discuss our numerical experience with the hybrid method

[IK2] based on the augmented Lagrangian formulation for estimating the

coefficient q in the elliptic equation,

(1.1) -div(q gradu) = f in fQ

uIr = 0

from a measurement z of the solution u (q*) which corresponds to the "true"

coefficient q*. Here Ql is a bounded open set in R',n = 1,2,3 with piecewise

smooth boundary F, and q is a scalar valued function of the spatial variable

x. Frequently u(q') is not known exactly; this may be due to model and/or

measurement error and also because measurements may be known only at

discrete points xi in the domain S1 so that z is constructed by interpola-

tion of pointwise data. A motivation for developing the hybrid method is

to combine the output least squares method and the equation error method

[C] into one algorithm while retaining the favorable properties of both. The

augmented Lagrangian formulation, just as the equation error method. re-

duces to a quadratic programing problem and, like the output least squares

method, it is versatile with regards to availability of observations as will

be demonstrated in Section 4. The method is based upon formulating the

problem as a constrained and regularized minimization problem (P') for two
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independent variables (q, u) E H2(fQ) x HI(.Q), and, as will be shown shortly.

the minimization (Pa) is solved interatively by the augmented Lagrangian

method. Let us consider:

(PIO) minimize I I u - z 12g +P- N (q)

c(q,u) = (-A)-' (div(qgradu) + f) = 0

subject to l(q) = a - q(x) < 0

g(q) = 1(1 q !2 2 -y2) <5 O,

where we assume that f E H-'(11) and z E H (11), that a and 1, are positive

constants satisfying a meas(11) 12 < -1 and where A denotes the Laplacian

with Dirichlet boundary condition as an operator from H' (5Q) onto 11- ' (Q.).

Note that c : H2(q) x H ;(SI) - H'(Q) is a continuous bilinear map. and

that g : H2 (-Q) - R' and the afine map C : H2(Q?) + H2 (fl are continuous.

Finally PN(q) is a regularization term.

It is easy to show [IK2] that there exists a Lagrange multiplier A' E H0(-)

associated with the equality constraint e(q, u) = 0 and it is given by

(1.2) A' = ( (q))- A (u3 - .

where (q3. u3 ) denotes a solution of (P').

A number of remarks are in order ( see also Section 3 for a further dis-

cussion).

(1) The pointwise constraint t guarantees the strong e~lpticity and the
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norm constraint g allows us to argue the existence of solutions of (P0 ), 

0. Without the norm constraint, (P3) may not have a solution in general.

(2) The second term in the objective functional represents a regularization

term in which _ 0 and N(3) is a seminorm on H2(fQ); e.g.

(1.3) N(q) = I Vq 1 2 + F I q... 1 2

I < j( n

For an appropriate choice of 3 _> 0 the use of a regularization term in (PO)

induces the continuity of the mapping from the observation z E H0, to the

solution (q8 (z), u" (Z)) of (P9), see [CK1, CK2]. In general 3 cannot be

taken equal to zero if continuous dependence of the solutions of (P' ) on Z is

desired.

(3) Since u is uniquely determined from q through the equality c(q. u) =

0. the objective functional can be considered to be dependent on q only. Ini

this way (P') is reduced to the well known regularized least squares method

given by

minimize I u(q) - z 12

subject to - div(q grad u(q)) = f, l(q) < 0. and g(q) < 0.

From an optimization point of view (PB) and the least squares method are

equivalent. But in (PB) q and u are independent variables and hence the im-

plementations based on (P-) are very different from those of the regularized

least squares formulation.
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(4) If n = 1 the parameter space H2 (fl) can be replaced by H'(.0). In

this case g(q) = (19' -y') and N(q) = Iq 12.

The augmented Lagrangian method applied to (P,) involves a sequence

of minimizations of the functionals

(1.4) 2 + 2 N(q)
+ (,k, e(q, u))H1 , + " I (q. i) 12

subject to I(q) < 0 and g(q) < 0

and the multiplier sequence {Ak in HI(Q) is generated by the updating rule

(1.5) xk+l A Ak + cke(qk, uk)

where the pair (qk, Uk) is a (local) minimizer of Lc,(', ". Ak). To carry out this

iterative scheme a sequence of monotonically nondecreasing. positive, real

numbers {ck} and the start-up value A)FHO(Q) for the Lagrange multiplier

for the equality constraint e(q,u) = 0 need to be chosen. In view of (1.2)

we suggest A' = 0 but convcrgence will be guaranteed for any other choice

of A' as well. The inequality constraint g(q) < 0 can be augmented in a

similar manner as the equality constraint e(q. u) = 0 (see [INI.IK2.lKKII for

details). The hybrid property of our algorithm is now evident since the term

k I e(q, u) 12 , involves the equation error

I div(q grad u) + -1

and the term I I u - z 12 represents an output least squares criterion.
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2 Algorithm and Implementation

We carried out our computations for the choices P = [0, 1] and fl = [0. 1] x

[0, 1]. For the computations, we discretized the problem using the finite

element method [AB]; i.e. we represented q and u by

Yn

q(x) = yq"l,,'(x) Hmr (2.1)
i=1

u'(x) = u'6(x) E v" (2.2)

where 0" E Hl(.Q) and t" E L'(.)). We used the following types of basis

functions for t," and 6, in the two dimensional case.

Type I The functions t' and o' are piecewise linear tensor splines [Sch]:

i.e. rn = (0 + 1)2

tj.I+)+t+l = Bm(xi)B(x 2) for i.j = 0....,. 1

and n = (N - 1)2

6 - = B;'(z 1)B(7 2) for i~j = 1,...,N -1

7



where

B,"(x ) -- NI( -' - x) on [,/-

0 ,elsewhere.

Type II The functions V! and 0!' are piecewise linear basis functions

on triangular elements with nodes at (TY, jr), i, 0 =O.M and nodes

at ( .,), i,j = 1,--.,N - 1. respectively, where m = (Al + 1) and

n = (N - 1)2.

Type III The functions 6n are the same as in Type II and the functions

are piecewise constant: i.e.,

tti 1)M+ , - \( ,-I ,. ,,-(x1)X( .,. )(x2)

for ij = 1, Al.,M.

where X(ab) is the indicator function of the interval (a.b) and 7 = 312. 111

the one dimensional case we used linear splines [Sch] for the approxination

of both q"' and u".

As a regularization term we took

(2.3) N (q) = I 0 1 ( 1 2 + jqz22 2) dx~dX2,

with the obvious modification in the one-dimensional case. Here we did not

follow the theory developed in [1K2] which requires that for n =2 or 3 the

second order terms be included and that N be chosen as in (1.3).

8



With these specifications made, the description of (Pa),# >_ 0, is given

by
(Pb ' 1") minimize Jm '"(q"(,un) = iu'- T HUn

2-.

+ U77b + lI1 + PM 12

subject to

,,n (q ,u-n ) := (,,n V U, ,0!,_{,) = 0 1 < i< n

q > a forl1j<m

q MT W q- < -f2

where qn = col(q, ... , q') E 'Z' is the coordinate vector of qm (x) E L :'(.)

in (2.1) and U = col(un.. ,u') E '? is the coordinate vector of uv(x) E

H'(0?) in (2.2). The coordinate vector f,". in R of e'"' is given by c"'

H-4" ' . In what follows we will use the symbol qn for both the element

in L (f) and its vector coordinate in R m and similarly for u7'. Moreover

the bar is deleted from the notation of j.. The matrices Hf E Rfl"" and

1V E y" ×' and the vector b E R" are given by

Hi = (V .ij ,.

1,1 = (V ,!n',VV,!7), i,j = 1... ,r.

b!= (V6,n, V z)

We did not implement the norm constraint JqJ2 < -y in the two dimensional

case, see also section 3 in this respect. If one were to implement this con-
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straint, one efficient way is to choose IP as the symmetric positive definite

matrix 1' on RI given by

1!' =14," + 11 +

with j = (017 , 0jr) L2 , ,j "- M'..

The augmented Lagrangian function associated with (P3"') with only the

equality constraint augmented has the form

L *n (q , ,n ,Ak) = l.IU, H TblIZ12

(2.4)
+.1q m 

T I.q M + a m(n)TH- 'im 'n + An.TE "
Ir .

The Lagrange multiplier \"k E Q' is updated by

(2.5) Ak+ 1 = A" + ckH (qk ,u )

where A(a-) = ,(\'_.)i6"(x) E Ho approximates the Lagrange multiplier

A" E HO for the equality constraint c(q.u) = 0 in (P'). We recall that

(2.5) can be considered as a steepest ascend algorithm for the dual problem

associated with (Pr').

Next we describe two algorithms to solve (P;"").

Algorithm 1

(1) Choose A, = 0 and {ck} monotonically increasing with c, sufficiently

large.
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(2) Set k = 1.

(3) Determine (q ', u") from

minimize m  ,) subject to q> oa.

(4) If convergence is achieved, then stop. Otherwise, put

CkHi -I im +cJlm(q, InUn).

Return to (3) with k = k + 1.

The second algorithm takes advantage of the quadratic property of L;'C:

i.e., Lm n is quadratic in q( resp. in) if Un is fixed (resp. if q" is fixed).

Algorithm 2

(1) Same as in Algorithm 1.

(2) Set k = 1 and un = H-b.

(3) Determine q i from

(Pqu) minimize U -,)T(q H-u1T"i(q U -I) + k  over

subject to qn > a.

(4) Determine u" from

(Pot) minimize 2 Hun + unrb +A n'ntMT , Un)

+E ."(qMu )rH-Z (.u") over U"

(5) is identical to (4) in Algorithm 1.
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We point out that the choice u = H- 1 b guarantees that the solution

q, of (Peq) coincides with the solution of the equation error formulation in

H-'.

Based on our theoretical work [IK1. IK2]. the choice of cl must be made

such that the Lagrangian function of (P3) is uniformly convex at the solution

(q3,u). Thus cl depends on z,f,y,3,a and embedding constants. In our

calculations, we chose cl heuristically. The monotonically increasing sequence

{Ck}t 2 could be determined according to known heuristics for augmented

Lagrangian method, see [PT], for example. N\\e took ck to be a fixed positive

constant in most of our calculations. The gradient of Lr'vn with respect to

q"' is given by

3ll'q" + 4JT(Uv) [A + CkH- (()q - fn)]

and the gradient of L"'" with respect to u is given by

Hit + b + H(q' ) kA + ckH-'(H(q")u' -. nr)]

where im"r(qm. u") = (un)q" -f = H(qm)zi . and the matrices

4 (u") E R"' n2 and H(q= ) E JlXn are defined by

t(Un), = ('m 7un,Vk), k = 1,...,n; i= I,...,m;

H~~q')iOj = V 0, €), i, j =,.,n.

With our choice of basis functions for t{' and €, the matrices (u) and

H(q') are sparse. In the two dimensional case, the gradient calculations can

12



be performed by the order of N2 + A 2 operations. The calculation of H-'

for given . E R'" requires the order of N3 operations.

Remarks (1) In Algorithm 2, Steps (3) and (4) are a quadratic minimization

in qM and 0 , respectively.

(2) One can successively use the Steps (3) and (4) in Algorithm 2 to obtain

the solution (q', un) to the minimization of L,(q , ) in Step (3) of

Algorithm 1. It is recommended that in the initial stages (i.e., k = 1,2) of

Algorithm 2, Steps (3) and (4) are repeated a few times before updating the

Lagrange multiplier in Step (5).

(3) We used the conjugate gradient method [AB] to perform Step (3) in

Algorithm I and Steps (3) and (4) in Algorithm 2 (we used the ZXCGR-

routine in the IMSL library in our calculations).

(4) The matrix operation H- 1 (which approximates (-A)-') plays the role

of (pre-) conditioning. In fact, (Po,0 t) can be written as

minimize

u(H +ck.H(q.)H-'H(q.))u"
(2.6)

+ur(b' + H(q')(AX - ckH-lf")) + constant

Since H(q') is the approximation to -V(qk(Vu)) on V"', H and H(q' )H - ' H(q')

possess the same order of spectral condition number. Without the opera-

tion H- 1 the equation error term in (Pot) would exhibit the square of the

condition number of H. For the case fQ = (0, 1] x [0, 1] (in general,in the

13



multi-dimensional case) the operation H-'c for given C E ' is tile most

costly calculation in our algorithms. Hence one may use a smoothing matrix

V based on the SSOR (symmetric successive overrelaxation) method [AB]

or on a multi-grid method [HT] in place of H-1 so that less calculation is

required. In this case the condition number of H(q'-)VH(q') is improved

(see [AB]).

(5) It is recommended to use a pre-conditioned conjugate gradient algo-

rithm for the minimization of (2.6) since the condition number of the matrix

H(q')H-'H(q') is still of the order of N'. The preconditioned conjugate

gradient method can be formulated as follows: setting

Q = H + ckH(q')H-'H(q.).

the j-th step consists of

- ghjld'Qdj

Uj+1 = uj + ajdj

gi+l = g, + ctQdj

h j+l = H-lgi+l

d = -h+, + O3d

where uj is the j-th iterate for the minimizer, gj is the corresponding gradient

vector, and dj is the conjugate direction. Initially one chooses u0 and puts

14



g. - Huo+b t +Hl(qk)(A-ckH-nf"), ho = -190 and do = -h 0 . Again oic

could replace the smoothing operation H -1 by one of the alternates described

above.
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3 Theoretical Considerations

In this section we will discuss some of the theoretical issues with regards

to estimation problems in elliptic PDEs and their solution by means of the

augmented Lagrangian technique.

Convergence of algorithm. The convergence of the augmented Lagrangian

method that we described in the previous sections has been studied in JIM?].

Under appropriate conditions on the problem data (Z, f, a, 3, y) E H0(.Q) x

H-I(f) x (R+)3 appearing in (P), convergence of the sequence (qk. uk, .A)

to (q9, u-, )') in H 2 (f) x H(Q) x 0) was shown. Here (qk-, Uk) are mini-

mizers (in a neighborhood of (q'. u')) of the functionals L ,(q, U. ,\k) subject

to 1(q) <_ 0 and g(q) < 0 as specified in (1.4). Ak is determined by (1.5)

and (qB.tt3) is a solution of (P3 ) with associated Lagrange multiplier A*.

A critical step in the proof of the convergence results involves showing the

positivity of the Hessian of the Lagrangian associated with (P,), evaluated

at (qa, ut3, A'). It is our future interest to study convergence properties of the

solutions (q". 1
' ) of the discretized problem (P"'") as (m. 7) --+ 0c.

Semi-norm regularization. The use of the regularization term 3N(q) in

(PO) is common in solving ill-posed inverse problems. In [CK1,CK2,KS] for

example, the stability of the solutions to the regularized output least squares

method with respect to perturbations in the problem data in (P-6) is studied.
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We point out the fact that the regularization term that we propose here is

only a semi norm on H 2. More specifically, it does not contain the IqlL 2-term

so that only the variation of q is regularized. If the L2-norm is included in

the regularization term, we normally obtain under-estimated solutions.

Identifiability and Singular set. It is easy to argue the existence of a

solution (qau0) of (PO) for > _ 0. Convergence of (q0 ,u) to a minimum

norm solution of (P0) (that is, a solution of (Po) that minimizes A'(q)) as

/3 -- 0+ was studied in [IK2,EKNI. Uniqueness of the solutions of (P0 ) and

(P), /3 > 0 cannot be guaranteed in general. We mention here a related

result concerning the injectivity of the mapping q --+ u(q) and refer to [K]

for further discussion of these matters. Injectivity of q -+ u(q) is a necessary

but not a sufficient condition to obtain the continuity of the inverse of the

map q --* zi(q). Let q" and q satisfy the constraints in (P-') where q" is the

"true" reference coefficient and q is a perturbed one. Let us denote by u(q')

and u(q), the corresponding solutions. Then we obtain the estimate [K].

(3.1) j Iq - q'I IVu(q') 2 dx :5 K Iu(q*) -

where the constant K > 0 depends on

jq'w',.,, jqjw-.p,. p > n and lu(q*)IL.

Let us define the singular set

(3.2) S = {z E A, Vu(q')(") = 0}.

17



Clearly, if meas(S) = 0 and u(q') = u(q), then q" = q a.e. so that tie

injectivity of the map q --+ u(q) holds at q*.

Choice of the Output Least Squares criterion. In our calculations, we

use the Ho-norm as an output least squares criterion. Such a choice is based

on the facts that (i) the Hg-topology for the output least squares criterion

and the H-'-topology for the equation error term are natural from the point

of view of the second order sufficient optimality condition for (P') (see [IK2]

for details), (ii) the choice of these topologies also leads to a method that

requires the same amounts of numerical differentiations in both the equation

error and the output least squares term, and (iii) it enhances the sensitivity of

the map q -- u(q). In terms of computational efforts there are no differences

between the use of the L2-norm criterion and that of the H0-norm criterion.

With a view on balancing the output least squares and the equation error

terms. one may take the H- 2-topology for the equation error term if tlh L2-

norm is used for the output least squares criterion, so that the augmented

Lagrangian function (1.4) is replaced by

LC,(q. u, A') = 21u - ZIL2 + 3N(q)
(3.3)

+(A,e(q,u))L2 + Ac(q. u)12

where e(q,u) = (-A)-l(div(q grad u) + f).

18



A general class of inverse problems in elliptic partial differential

equations. In this paper we restricted our attention to the Dirichlet bound-

ary value problem (1.1). Without difficulties one can modify our formulation

to treat other types of boundary conditions as well. For example, consider

the problem of determining q(x) in

-div(q grad u) + p(x)u = f

with the boundary condition q-u = g on F where -u denotes the outward

normal derivative. p(x) E L' with p(x) _ w > 0 and g E H1'/2 (F). In this

case, we define the equation error term by

e(q, u) = (- A +l)-(-div(q grad u) + pu - f)

where A is the Laplacian with dom(A) = {u E H2(0) and -r = 0) and

H' is replaced by H' in (P 3 ). While we are concerned with estimating

the diffusion coefficient in tii- paper, our formulation enables us to consider

the estimation problem for other coefficients in elliptic partial differential

equations (e.g., p(ar) E L'(Q) in the above example).

Inequality constraints. As pointed out in the Introduction, the inequality

constraints (i.e., the pointwise constraint I and the norm constraint g) are

required for existence of solutions to (P0 ). In our calculations, we ignored

the pointwise lower bound without harm. Besides, in our formulation the

positivity of q(x) is not a hard constraint since we do not need to solve the

19



equation (1.1) for u in each iteration. The relevance of the norm constraint

was investigated for the one dimensional case in [KK1]. It was observed

that its use improved the results if the interior of the singular set S = {x E

10, 11, u(q') = O} is not empty and it did not change them significantly if

meas S = 0, provided, of course, that -y is chosen such that 19*lH(o.) _< 1.

We did not use the norm constraint in our implementation for the case Q =

[0, 11 x [0. 1] since we do not expect that any new phenomena arise. Moreover

the regularization term also provides a semi-norm bound for the solutions.

Miscellaneous comments.

An implicit regularization is often achieved by choosing coarser basis el-

ements for representing q() than for u(x). For example. in some of our

calculations. we took N = 2M (see [KKI, KK2. KK3]).

20
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4 Numerical Results

Numerous numerical experiments were carried out for the two algorithms

that we explained in Section 2. The tests were conducted in the following

way. For all examples except for Example 7 we chose the "true" parameter q"

as well as the solution u' = u(q") and calculated f from (1.1). For Example

7 we chose q" and f and calculated u" = u(q*) numerically. The data z were

determined from u(q*) either by putting z = u(q') ("distributed data") or

by evaluating u(q') at points xi E Q and determining 2 as a cubic Hermite

spline interpolation of z, = u(q. x,). Noisy data were obtained by specifying

Z, = u(q, x) + 6fi,

with , uniformly distributed random number in [-1,1]. and choosing : as the

cubic Hermite spline interpolation of these z,. The numerical examples to

be discussed below are divided into two groups an are based on lwu ditfcrcit

packages. The first six examples demonstrate the performance of the algo-

rithm while a specific aspect, as for instance the behavior near the singular

set, is under investigation and the number of unknowns is no larger than 81.

In Examples 7 and 8 we show that the algorithm that we propose also works

very well for an extremely fine resolution (64 x 64) of the unknown coeffi-

cient. For the calculations of Examples 1-6 we took Type I basis functions

with the grid for the state approximation twice as fine as the grid for the
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coefficient approximation (N = 2M1). This choice introduces some inherent

regularization. The (-A)- ' operation is resolved by Cholesky factorization

and the optimization problems are solved with the IMSL version ZXCGR

of the conjugate gradient algorithm. The discretization for Examples 7 and

8 used Type Ill basis functions with N = M. The (-L)1 operation is real-

ized by a multigrid step involving one V-cycle with finite element injection,

while the optimization problems are solved by a preconditioned conjugate

gradient algorithm as explained in (5) of Section 2. Moreover, Algorithm 2

was slightly modified by iterating several times between steps (3) and (4)

before going to step (5). The results from a coarser mesh are then used as

start-up values for the next finer mesh. The calculations for Examples 1-60

were carried out on an IBM-AT and those for Examples 7-S on an IBM .30S1.

both in double precision. For further specification of the numerical aspects

and for additional test examples we refer to IKK 1-3].

We summarize some general observations.

(1) In all examples the augmented Lagrangian algorithm in the form of

Algorithm 1 as well as Algorithm 2 performed well.

(2) In all examples where complete data were available (i.e. z = u(q')).

where q* was a smooth function and where the singular set S was small, the

first or second iteration gave a good approximation to both q" and tu((f').

If these requirements were not satisfied, and m was sufficiently large. then
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higher iterations gave an improvement over the first one. Recall that for

Algorithm 2, the determination of the first iteration q' coincides with the

solution of the equation error algorithm.

(3) Algorithm 2 is significantly faster than Algorithm 1.

(4) For the estimation of q" the form of the singular set S is of great

importance. If the dimension of S is smaller than the dimension of P, (and

= 0 or 0 is very small), then the maximum error of the approximation to

q* generally occurs within a small neighborhood of S. If S contains an open

set, then q" cannot be estimated there.

(5) Ve could observe conversion and rates of convergence of the solutions

to (P"') as n - oc, n - x. see [KKI, KK2].

(6) The use of a regularization term, especially if the same grid is cho-

sen for both the coefficient and the state space approximation, or to avoid

oscillations in the neighborhood of a singular set, is useful. We are currently

working on an adaptive algorithm to specify the level of regularization that

is required for a specific problem.

(7) The augmented Lagrangian algorithm that we propose also works

very well when applied to problems with discontinuous unknown coefficients.

Comparing the results where a gridpoint of the discretization for the coeffi-

cient coincides with a discontinuity of q*, to those where discontinuities and

grid points do not coincide, the latter were clearly better.
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Most of the plots that we present below are endowed with the following

information:

Example X, / = X, Al = X, k = X, L 2 = z, additional comments.

Here L2 stands for the L-error lq- 1 - q*IL2. Unless otherwise specified,

the data were taken to be error free distributed observations, z = u(q-).

Examples 3-6 were calculated with Algorithm 1, the remaining examples

with Algorithm 2. Since the numerical results always produced a very good

approximation to u(q*) we only show the numerical results for the approxi-

mation of the coefficient q* (except in Example 6). In the one dimensional

examples fQ = (0, 1) and in the two dimensional examples fQ = (0,] ) x (0. 1).

The start-up value for q' for the finite dimensional approximating problems

(pr'n) was chosen to be identically 1 in Examples 1-6 and 1.5 in Examples

7 and 8. For all calculations ck was taken to be equal to 1.

Example 1. Here we take

Z(.,y) = u(q)(rY) = W(x)w(y),

q" = 2 + sin(x2y)

where
-9x 2 +6 , " E 10, z ]

-9X 2 + 12x + 3 ,X Et13

with f calculated from (1.1). In Plot 1 we give the graph for z and q° as well

as the numerical result for q after 8 iterations without and with the use of a
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regularization term. Here the singular set has non-empty interior. Observe

that regardless of the use of a regularization term, q* is identified well over

the complement of the singular set.

Example 2. Here we took

z(x,y) = u(q*)(x,y) = (y- 2y 2 )sin2rxsin2ry
q' = 2 + sin(x2 y).

and f is calculated from (1.1).

The singular set for this example consists of isolated points and the line

characterized by y = 0 and y = 1. Plot 2 gives a graph of I V xI and Plot

3 shows the results after the first and eighth iteration. We point out the

improvement in the neighborhood of the singular set characterized by y = "

Example 3. Here we took

u(q*) = sin 2irx sin 2iry
q" =1+6x2Y(1 -y),

and calculated f from (1.1). Then tests were carried out assuming that suc-

cessively more data points become available. The results after one iteration

of Algorithm 1 are shown in Plot 4. Further iterations so not change the

results significantly for this example. This is probably due to the fact that

the discretization of q is rather coarse.
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Example 4. This is an example with a discontinuous coefficient:

z =u(q) = sinrxr

I for: x6104]I" x for2 i x E (I
-9X L x - 3 for x E [-,1].

The results for Al = 21, Al = 22 and M = 42 are given in Plot 5. For Al = 21

and Al = 42, the discontinuities are also grid points of the discretization for q.

We point out that these estimates are obtained without a-priori assumptions

on the location of the discontinuity and the size of the jump. The results can

be improved by using regularization, see Plot 6.

Example 5. Here q" is chosen as in Example 4. We compare the nu-

merical results for two different observations z, = sin 7rx and Z2 = sin 2,z.

Observe that the singular set for :I is S(zl) = I and similarly S(: 2) = {, I).

The last graph in Plot 7 shows the numerical result, when Algorithm I was

modified in the obvious way to account for two observations simultaneously.

Example 6. For this example we chose

u(q") =sin 7rx.
q" = 1 +a.

NWe put z(xi) = u(q')(xi) with xi = _' for i = 0,...,7,9,.. ,42, and
42'

z(-s) = u(q')(xs) + 1, thus producing an outlier at -. Then we passed
421 hewepse

a cubic Hermite spline interpolate through zi, see the thicker lines in Plot

8. To estimate the unknown parameter q" we used Algorithm 1 as well
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as Algorithm 1 with the Ju - zliHi output criterion replaced by an u-

zljdj, criterion. The second curve in the graphs of Plot 8 give the numerical

result for u". Differently from the H-1-criterion, the outlier is essentially

ignored by the numerical solution u", when the WIV"-criterion is used. In

this case the approximation q to q is still qualitatively correct while the

H1 criterion without regularization produces a useless estimate for q*. For

further discussion of this example see [KK3].

Example 7. Here we took

f = sin 2irx sin 2ry,

q, 2 for(x,y) E (.3,.3) x (.3,.6)
q" 1 elsewhere

and data were assumed to be available on a 20 x 20 grid for the first result

and on a 40 x 40 grid for the second result. Observe that adding more data

points results in a sharper resolution of the discontinuous coefficient q'.

Example 8. For this example, with

u(qw) = sin 2'x sin2ry,
q" = I+ 6x2 y(1 - y)

consecutively more noise was added to u(q*)(xi) at the observation points xi

which were assumed at a uniform 10 x 10 grid. Observe that we are referring

to absolute, rather than relative noise here.
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Example 1 Example 1
function z function q'.

Plot 1
Example 1 Example 1

0=0, M =6, k=8, L2=0.12 /=0. Al = 6, k =8, L2 =0.0036
Plot 2 Example 2

function I V zj

Plot 3 Example 2 Example 2p3=0, M=9, k=1, L2 = 0 .034 p3=0, M=9, k=8, L = 0. 0 0 6 5

Example 3 Example 3
Plot4 3=0, M=5, k=1 3=0, M=5, k=1

interpolated data at interpolated data at,3} itroaedaaa4, 4}

Example 3
0=0, MI=5, k=1

interpolated data at

Example 4 Example 4
/3=0, M=21, k=2, L2 = 0.101 /3=0, Ai=22, k=, L2 =0.064

Plot 5
Example 4 Example 4

3=0, M=41, k=2, L2 =0.055 /3=0, M=42, k , =2 0.060
Plot 6 Example 4

l =10- , M=41, k =3, L = 0.0445
Example 5 Example 5

/3=0, M=41, k=3. L2 =0.0525 /3=0. M=41, k=3. L2=0.0-17

Plot 7 Example 5

=0. M=41, k=3, L2 = 0.0447,
two distributed observations

Plot 8 Example 6 Example 6
/3 = 0, A1 = 6, k = 3. W1"'-criterion /3 = 0.1. Ml = 6, k- 3. 11-criteriomi

Example 7
/3 = 10- , Al = 64, k = 20 x 20 point measurements

Plot 9
Example 7

= 10- ", M = 64, kc = 40 x 40 point measurements
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Example 8
1 0-3, Ml 64, k =10 x 10 point data w~ith 0% noise

Plot 10 #5 X 10-3, A = 64, k = 10 x 10 point data with 1% noise
?5 x 10', M- 64, k = 10 x 10 point data with 3% noise
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